Removed one more call to exit()
[freeradius.git] / src / main / threads.c
1 /*
2  * threads.c    request threading support
3  *
4  * Version:     $Id$
5  *
6  *   This program is free software; you can redistribute it and/or modify
7  *   it under the terms of the GNU General Public License as published by
8  *   the Free Software Foundation; either version 2 of the License, or
9  *   (at your option) any later version.
10  *
11  *   This program is distributed in the hope that it will be useful,
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *   GNU General Public License for more details.
15  *
16  *   You should have received a copy of the GNU General Public License
17  *   along with this program; if not, write to the Free Software
18  *   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
19  *
20  * Copyright 2000,2006  The FreeRADIUS server project
21  * Copyright 2000  Alan DeKok <aland@ox.org>
22  */
23
24 #include <freeradius-devel/ident.h>
25 RCSID("$Id$")
26
27 #include <freeradius-devel/radiusd.h>
28 #include <freeradius-devel/rad_assert.h>
29
30 /*
31  *      Other OS's have sem_init, OS X doesn't.
32  */
33 #ifdef HAVE_SEMAPHORE_H
34 #include <semaphore.h>
35 #endif
36
37 #ifdef DARWIN
38 #include <mach/task.h>
39 #include <mach/semaphore.h>
40
41 #undef sem_t
42 #define sem_t semaphore_t
43 #undef sem_init
44 #define sem_init(s,p,c) semaphore_create(mach_task_self(),s,SYNC_POLICY_FIFO,c)
45 #undef sem_wait
46 #define sem_wait(s) semaphore_wait(*s)
47 #undef sem_post
48 #define sem_post(s) semaphore_signal(*s)
49 #endif
50
51 #ifdef HAVE_SYS_WAIT_H
52 #include <sys/wait.h>
53 #endif
54
55 #ifdef HAVE_PTHREAD_H
56
57 #ifdef HAVE_OPENSSL_CRYPTO_H
58 #include <openssl/crypto.h>
59 #endif
60 #ifdef HAVE_OPENSSL_ERR_H
61 #include <openssl/err.h>
62 #endif
63
64 #define SEMAPHORE_LOCKED        (0)
65 #define SEMAPHORE_UNLOCKED      (1)
66
67 #define THREAD_RUNNING          (1)
68 #define THREAD_CANCELLED        (2)
69 #define THREAD_EXITED           (3)
70
71 #define NUM_FIFOS               RAD_LISTEN_MAX
72
73
74 /*
75  *  A data structure which contains the information about
76  *  the current thread.
77  *
78  *  pthread_id     pthread id
79  *  thread_num     server thread number, 1...number of threads
80  *  semaphore     used to block the thread until a request comes in
81  *  status        is the thread running or exited?
82  *  request_count the number of requests that this thread has handled
83  *  timestamp     when the thread started executing.
84  */
85 typedef struct THREAD_HANDLE {
86         struct THREAD_HANDLE *prev;
87         struct THREAD_HANDLE *next;
88         pthread_t            pthread_id;
89         int                  thread_num;
90         int                  status;
91         unsigned int         request_count;
92         time_t               timestamp;
93         REQUEST              *request;
94 } THREAD_HANDLE;
95
96 /*
97  *      For the request queue.
98  */
99 typedef struct request_queue_t {
100         REQUEST           *request;
101         RAD_REQUEST_FUNP  fun;
102 } request_queue_t;
103
104 typedef struct thread_fork_t {
105         pid_t           pid;
106         int             status;
107         int             exited;
108 } thread_fork_t;
109
110
111 /*
112  *      A data structure to manage the thread pool.  There's no real
113  *      need for a data structure, but it makes things conceptually
114  *      easier.
115  */
116 typedef struct THREAD_POOL {
117         THREAD_HANDLE *head;
118         THREAD_HANDLE *tail;
119
120         int total_threads;
121         int active_threads;     /* protected by queue_mutex */
122         int max_thread_num;
123         int start_threads;
124         int max_threads;
125         int min_spare_threads;
126         int max_spare_threads;
127         unsigned int max_requests_per_thread;
128         unsigned long request_count;
129         time_t time_last_spawned;
130         int cleanup_delay;
131         int spawn_flag;
132
133         pthread_mutex_t wait_mutex;
134         lrad_hash_table_t *waiters;
135
136         /*
137          *      All threads wait on this semaphore, for requests
138          *      to enter the queue.
139          */
140         sem_t           semaphore;
141
142         /*
143          *      To ensure only one thread at a time touches the queue.
144          */
145         pthread_mutex_t queue_mutex;
146
147         int             max_queue_size;
148         int             num_queued;
149         int             can_read_detail;
150         lrad_fifo_t     *fifo[NUM_FIFOS];
151 } THREAD_POOL;
152
153 static THREAD_POOL thread_pool;
154 static int pool_initialized = FALSE;
155
156
157 /*
158  *      A mapping of configuration file names to internal integers
159  */
160 static const CONF_PARSER thread_config[] = {
161         { "start_servers",           PW_TYPE_INTEGER, 0, &thread_pool.start_threads,           "5" },
162         { "max_servers",             PW_TYPE_INTEGER, 0, &thread_pool.max_threads,             "32" },
163         { "min_spare_servers",       PW_TYPE_INTEGER, 0, &thread_pool.min_spare_threads,       "3" },
164         { "max_spare_servers",       PW_TYPE_INTEGER, 0, &thread_pool.max_spare_threads,       "10" },
165         { "max_requests_per_server", PW_TYPE_INTEGER, 0, &thread_pool.max_requests_per_thread, "0" },
166         { "cleanup_delay",           PW_TYPE_INTEGER, 0, &thread_pool.cleanup_delay,           "5" },
167         { "max_queue_size",          PW_TYPE_INTEGER, 0, &thread_pool.max_queue_size,           "65536" },
168         { NULL, -1, 0, NULL, NULL }
169 };
170
171
172 #ifdef HAVE_OPENSSL_CRYPTO_H
173
174 /*
175  *      If we're linking against OpenSSL, then it is the
176  *      duty of the application, if it is multithreaded,
177  *      to provide OpenSSL with appropriate thread id
178  *      and mutex locking functions
179  *
180  *      Note: this only implements static callbacks.
181  *      OpenSSL does not use dynamic locking callbacks
182  *      right now, but may in the futiure, so we will have
183  *      to add them at some point.
184  */
185
186 static pthread_mutex_t *ssl_mutexes = NULL;
187
188 static unsigned long ssl_id_function(void)
189 {
190         return (unsigned long) pthread_self();
191 }
192
193 static void ssl_locking_function(int mode, int n, const char *file, int line)
194 {
195         file = file;            /* -Wunused */
196         line = line;            /* -Wunused */
197
198         if (mode & CRYPTO_LOCK) {
199                 pthread_mutex_lock(&(ssl_mutexes[n]));
200         } else {
201                 pthread_mutex_unlock(&(ssl_mutexes[n]));
202         }
203 }
204
205 static int setup_ssl_mutexes(void)
206 {
207         int i;
208
209         ssl_mutexes = rad_malloc(CRYPTO_num_locks() * sizeof(pthread_mutex_t));
210         if (!ssl_mutexes) {
211                 radlog(L_ERR, "Error allocating memory for SSL mutexes!");
212                 return 0;
213         }
214
215         for (i = 0; i < CRYPTO_num_locks(); i++) {
216                 pthread_mutex_init(&(ssl_mutexes[i]), NULL);
217         }
218
219         CRYPTO_set_id_callback(ssl_id_function);
220         CRYPTO_set_locking_callback(ssl_locking_function);
221
222         return 1;
223 }
224 #endif
225
226
227 /*
228  *      We don't want to catch SIGCHLD for a host of reasons.
229  *
230  *      - exec_wait means that someone, somewhere, somewhen, will
231  *      call waitpid(), and catch the child.
232  *
233  *      - SIGCHLD is delivered to a random thread, not the one that
234  *      forked.
235  *
236  *      - if another thread catches the child, we have to coordinate
237  *      with the thread doing the waiting.
238  *
239  *      - if we don't waitpid() for non-wait children, they'll be zombies,
240  *      and will hang around forever.
241  *
242  */
243 static void reap_children(void)
244 {
245         pid_t pid;
246         int status;
247         thread_fork_t mytf, *tf;
248
249
250         pthread_mutex_lock(&thread_pool.wait_mutex);
251
252         do {
253                 pid = waitpid(0, &status, WNOHANG);
254                 if (pid <= 0) break;
255
256                 mytf.pid = pid;
257                 tf = lrad_hash_table_finddata(thread_pool.waiters, &mytf);
258                 if (!tf) continue;
259
260                 tf->status = status;
261                 tf->exited = 1;
262         } while (lrad_hash_table_num_elements(thread_pool.waiters) > 0);
263
264         pthread_mutex_unlock(&thread_pool.wait_mutex);
265 }
266
267 /*
268  *      Add a request to the list of waiting requests.
269  *      This function gets called ONLY from the main handler thread...
270  *
271  *      This function should never fail.
272  */
273 static int request_enqueue(REQUEST *request, RAD_REQUEST_FUNP fun)
274 {
275         request_queue_t *entry;
276
277         pthread_mutex_lock(&thread_pool.queue_mutex);
278
279         thread_pool.request_count++;
280
281         if (thread_pool.num_queued >= thread_pool.max_queue_size) {
282                 pthread_mutex_unlock(&thread_pool.queue_mutex);
283
284                 /*
285                  *      Mark the request as done.
286                  */
287                 radlog(L_ERR, "!!! ERROR !!! The server is blocked: discarding new request %d", request->number);
288                 request->child_state = REQUEST_DONE;
289                 return 0;
290         }
291
292         entry = rad_malloc(sizeof(*entry));
293         entry->request = request;
294         entry->fun = fun;
295
296         /*
297          *      Push the request onto the appropriate fifo for that
298          */
299         if (!lrad_fifo_push(thread_pool.fifo[request->priority],
300                             entry)) {
301                 pthread_mutex_unlock(&thread_pool.queue_mutex);
302                 radlog(L_ERR, "!!! ERROR !!! Failed inserting request %d into the queue", request->number);
303                 request->child_state = REQUEST_DONE;
304                 return 0;
305         }
306
307         /*
308          *      We've added an entry that didn't come from the detail
309          *      file.  Note that the child thread should signal the
310          *      main worker thread again when the queue becomes empty.
311          */
312         if (request->listener->type != RAD_LISTEN_DETAIL) {
313                 thread_pool.can_read_detail = FALSE;
314         }
315
316         thread_pool.num_queued++;
317
318         pthread_mutex_unlock(&thread_pool.queue_mutex);
319
320         /*
321          *      There's one more request in the queue.
322          *
323          *      Note that we're not touching the queue any more, so
324          *      the semaphore post is outside of the mutex.  This also
325          *      means that when the thread wakes up and tries to lock
326          *      the mutex, it will be unlocked, and there won't be
327          *      contention.
328          */
329         sem_post(&thread_pool.semaphore);
330
331         return 1;
332 }
333
334 /*
335  *      Remove a request from the queue.
336  */
337 static int request_dequeue(REQUEST **request, RAD_REQUEST_FUNP *fun)
338 {
339         RAD_LISTEN_TYPE i, start;
340         request_queue_t *entry;
341
342         reap_children();
343
344         pthread_mutex_lock(&thread_pool.queue_mutex);
345
346         /*
347          *      Clear old requests from all queues.
348          *
349          *      We only do one pass over the queue, in order to
350          *      amortize the work across the child threads.  Since we
351          *      do N checks for one request de-queued, the old
352          *      requests will be quickly cleared.
353          */
354         for (i = 0; i < RAD_LISTEN_MAX; i++) {
355                 entry = lrad_fifo_peek(thread_pool.fifo[i]);
356                 if (!entry ||
357                     (entry->request->master_state != REQUEST_STOP_PROCESSING)) {
358                         continue;
359 }
360                 /*
361                  *      This entry was marked to be stopped.  Acknowledge it.
362                  */
363                 entry = lrad_fifo_pop(thread_pool.fifo[i]);
364                 rad_assert(entry != NULL);
365                 entry->request->child_state = REQUEST_DONE;
366         }
367
368         start = 0;
369  retry:
370         /*
371          *      Pop results from the top of the queue
372          */
373         for (i = start; i < RAD_LISTEN_MAX; i++) {
374                 entry = lrad_fifo_pop(thread_pool.fifo[i]);
375                 if (entry) {
376                         start = i;
377                         break;
378                 }
379         }
380
381         if (!entry) {
382                 pthread_mutex_unlock(&thread_pool.queue_mutex);
383                 *request = NULL;
384                 *fun = NULL;
385                 return 0;
386         }
387
388         rad_assert(thread_pool.num_queued > 0);
389         thread_pool.num_queued--;
390         *request = entry->request;
391         *fun = entry->fun;
392         free(entry);
393
394         rad_assert(*request != NULL);
395         rad_assert((*request)->magic == REQUEST_MAGIC);
396         rad_assert(*fun != NULL);
397
398         /*
399          *      If the request has sat in the queue for too long,
400          *      kill it.
401          *
402          *      The main clean-up code can't delete the request from
403          *      the queue, and therefore won't clean it up until we
404          *      have acknowledged it as "done".
405          */
406         if ((*request)->master_state == REQUEST_STOP_PROCESSING) {
407                 (*request)->child_state = REQUEST_DONE;
408                 goto retry;
409         }
410
411         /*
412          *      The thread is currently processing a request.
413          */
414         thread_pool.active_threads++;
415
416         pthread_mutex_unlock(&thread_pool.queue_mutex);
417
418         return 1;
419 }
420
421
422 /*
423  *      The main thread handler for requests.
424  *
425  *      Wait on the semaphore until we have it, and process the request.
426  */
427 static void *request_handler_thread(void *arg)
428 {
429         RAD_REQUEST_FUNP  fun;
430         THREAD_HANDLE     *self = (THREAD_HANDLE *) arg;
431
432         /*
433          *      Loop forever, until told to exit.
434          */
435         do {
436                 int can_read_detail;
437
438                 /*
439                  *      Wait to be signalled.
440                  */
441                 DEBUG2("Thread %d waiting to be assigned a request",
442                        self->thread_num);
443         re_wait:
444                 if (sem_wait(&thread_pool.semaphore) != 0) {
445                         /*
446                          *      Interrupted system call.  Go back to
447                          *      waiting, but DON'T print out any more
448                          *      text.
449                          */
450                         if (errno == EINTR) {
451                                 DEBUG2("Re-wait %d", self->thread_num);
452                                 goto re_wait;
453                         }
454                         radlog(L_ERR, "Thread %d failed waiting for semaphore: %s: Exiting\n",
455                                self->thread_num, strerror(errno));
456                         break;
457                 }
458
459                 DEBUG2("Thread %d got semaphore", self->thread_num);
460
461                 /*
462                  *      Try to grab a request from the queue.
463                  *
464                  *      It may be empty, in which case we fail
465                  *      gracefully.
466                  */
467                 if (!request_dequeue(&self->request, &fun)) continue;
468
469                 self->request->child_pid = self->pthread_id;
470                 self->request_count++;
471
472                 DEBUG2("Thread %d handling request %d, (%d handled so far)",
473                        self->thread_num, self->request->number,
474                        self->request_count);
475
476                 radius_handle_request(self->request, fun);
477
478                 /*
479                  *      Update the active threads.
480                  */
481                 pthread_mutex_lock(&thread_pool.queue_mutex);
482                 rad_assert(thread_pool.active_threads > 0);
483                 thread_pool.active_threads--;
484
485                 /*
486                  *      If we're not currently allowed to read the
487                  *      detail file, AND there are no requests queued,
488                  *      THEN signal the main worker thread that
489                  *      there's at least one waiting thread (us) who
490                  *      can accept a packet from the detail file.
491                  */
492                 can_read_detail = FALSE;
493                 if (!thread_pool.can_read_detail &&
494                     (thread_pool.num_queued == 0)) {
495                         can_read_detail = TRUE;
496                 }
497
498                 pthread_mutex_unlock(&thread_pool.queue_mutex);
499
500                 /*
501                  *      Do this out of the lock to be nice to everyone.
502                  */
503                 if (can_read_detail) {
504                         radius_signal_self(RADIUS_SIGNAL_SELF_DETAIL);
505                 }
506
507         } while (self->status != THREAD_CANCELLED);
508
509         DEBUG2("Thread %d exiting...", self->thread_num);
510
511 #ifdef HAVE_OPENSSL_ERR_H
512         /*
513          *      If we linked with OpenSSL, the application
514          *      must remove the thread's error queue before
515          *      exiting to prevent memory leaks.
516          */
517         ERR_remove_state(0);
518 #endif
519
520         /*
521          *  Do this as the LAST thing before exiting.
522          */
523         self->request = NULL;
524         self->status = THREAD_EXITED;
525
526         return NULL;
527 }
528
529 /*
530  *      Take a THREAD_HANDLE, delete it from the thread pool and
531  *      free its resources.
532  *
533  *      This function is called ONLY from the main server thread,
534  *      ONLY after the thread has exited.
535  */
536 static void delete_thread(THREAD_HANDLE *handle)
537 {
538         THREAD_HANDLE *prev;
539         THREAD_HANDLE *next;
540
541         rad_assert(handle->request == NULL);
542
543         DEBUG2("Deleting thread %d", handle->thread_num);
544
545         prev = handle->prev;
546         next = handle->next;
547         rad_assert(thread_pool.total_threads > 0);
548         thread_pool.total_threads--;
549
550         /*
551          *      Remove the handle from the list.
552          */
553         if (prev == NULL) {
554                 rad_assert(thread_pool.head == handle);
555                 thread_pool.head = next;
556         } else {
557                 prev->next = next;
558         }
559
560         if (next == NULL) {
561                 rad_assert(thread_pool.tail == handle);
562                 thread_pool.tail = prev;
563         } else {
564                 next->prev = prev;
565         }
566
567         /*
568          *      Free the handle, now that it's no longer referencable.
569          */
570         free(handle);
571 }
572
573
574 /*
575  *      Spawn a new thread, and place it in the thread pool.
576  *
577  *      The thread is started initially in the blocked state, waiting
578  *      for the semaphore.
579  */
580 static THREAD_HANDLE *spawn_thread(time_t now)
581 {
582         int rcode;
583         THREAD_HANDLE *handle;
584         pthread_attr_t attr;
585
586         /*
587          *      Ensure that we don't spawn too many threads.
588          */
589         if (thread_pool.total_threads >= thread_pool.max_threads) {
590                 DEBUG2("Thread spawn failed.  Maximum number of threads (%d) already running.", thread_pool.max_threads);
591                 return NULL;
592         }
593
594         /*
595          *      Allocate a new thread handle.
596          */
597         handle = (THREAD_HANDLE *) rad_malloc(sizeof(THREAD_HANDLE));
598         memset(handle, 0, sizeof(THREAD_HANDLE));
599         handle->prev = NULL;
600         handle->next = NULL;
601         handle->pthread_id = NO_SUCH_CHILD_PID;
602         handle->thread_num = thread_pool.max_thread_num++;
603         handle->request_count = 0;
604         handle->status = THREAD_RUNNING;
605         handle->timestamp = time(NULL);
606
607         /*
608          *      Initialize the thread's attributes to detached.
609          *
610          *      We could call pthread_detach() later, but if the thread
611          *      exits between the create & detach calls, it will need to
612          *      be joined, which will never happen.
613          */
614         pthread_attr_init(&attr);
615         pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
616
617         /*
618          *      Create the thread detached, so that it cleans up it's
619          *      own memory when it exits.
620          *
621          *      Note that the function returns non-zero on error, NOT
622          *      -1.  The return code is the error, and errno isn't set.
623          */
624         rcode = pthread_create(&handle->pthread_id, &attr,
625                         request_handler_thread, handle);
626         if (rcode != 0) {
627                 radlog(L_ERR, "Thread create failed: %s",
628                        strerror(rcode));
629                 return NULL;
630         }
631         pthread_attr_destroy(&attr);
632
633         /*
634          *      One more thread to go into the list.
635          */
636         thread_pool.total_threads++;
637         DEBUG2("Thread spawned new child %d. Total threads in pool: %d",
638                         handle->thread_num, thread_pool.total_threads);
639
640         /*
641          *      Add the thread handle to the tail of the thread pool list.
642          */
643         if (thread_pool.tail) {
644                 thread_pool.tail->next = handle;
645                 handle->prev = thread_pool.tail;
646                 thread_pool.tail = handle;
647         } else {
648                 rad_assert(thread_pool.head == NULL);
649                 thread_pool.head = thread_pool.tail = handle;
650         }
651
652         /*
653          *      Update the time we last spawned a thread.
654          */
655         thread_pool.time_last_spawned = now;
656
657         /*
658          *      And return the new handle to the caller.
659          */
660         return handle;
661 }
662
663 /*
664  *      Temporary function to prevent server from executing a SIGHUP
665  *      until all threads are finished handling requests.  This returns
666  *      the number of active threads to 'radiusd.c'.
667  */
668 int total_active_threads(void)
669 {
670         /*
671          *      We don't acquire the mutex, so this is just an estimate.
672          *      We can't return with the lock held, so there's no point
673          *      in getting the guaranteed correct value; by the time
674          *      the caller sees it, it can be wrong again.
675          */
676         return thread_pool.active_threads;
677 }
678
679
680 static uint32_t pid_hash(const void *data)
681 {
682         const thread_fork_t *tf = data;
683
684         return lrad_hash(&tf->pid, sizeof(tf->pid));
685 }
686
687 static int pid_cmp(const void *one, const void *two)
688 {
689         const thread_fork_t *a = one;
690         const thread_fork_t *b = two;
691
692         return (a->pid - b->pid);
693 }
694
695 /*
696  *      Allocate the thread pool, and seed it with an initial number
697  *      of threads.
698  *
699  *      FIXME: What to do on a SIGHUP???
700  */
701 int thread_pool_init(int spawn_flag)
702 {
703         int             i, rcode;
704         CONF_SECTION    *pool_cf;
705         time_t          now;
706
707         DEBUG("Initializing the thread pool...");
708         now = time(NULL);
709
710         /*
711          *      We're not spawning new threads, don't do
712          *      anything.
713          */
714         if (!spawn_flag) return 0;
715
716         /*
717          *      After a SIGHUP, we don't over-write the previous values.
718          */
719         if (!pool_initialized) {
720                 /*
721                  *      Initialize the thread pool to some reasonable values.
722                  */
723                 memset(&thread_pool, 0, sizeof(THREAD_POOL));
724                 thread_pool.head = NULL;
725                 thread_pool.tail = NULL;
726                 thread_pool.total_threads = 0;
727                 thread_pool.max_thread_num = 1;
728                 thread_pool.cleanup_delay = 5;
729                 thread_pool.spawn_flag = spawn_flag;
730
731                 if ((pthread_mutex_init(&thread_pool.wait_mutex,NULL) != 0)) {
732                         radlog(L_ERR, "FATAL: Failed to initialize wait mutex: %s",
733                                strerror(errno));
734                         return -1;
735                 }
736
737                 /*
738                  *      Create the hash table of child PID's
739                  */
740                 thread_pool.waiters = lrad_hash_table_create(pid_hash,
741                                                              pid_cmp,
742                                                              free);
743                 if (!thread_pool.waiters) {
744                         radlog(L_ERR, "FATAL: Failed to set up wait hash");
745                         return -1;
746                 }
747         }
748
749         pool_cf = cf_section_find("thread");
750         if (!pool_cf) {
751                 radlog(L_ERR, "FATAL: Attempting to start in multi-threaded mode with no thread configuration in radiusd.conf");
752                 return -1;
753         }
754
755         if (cf_section_parse(pool_cf, NULL, thread_config) < 0) {
756                 return -1;
757         }
758
759         /*
760          *      Catch corner cases.
761          */
762         if (thread_pool.min_spare_threads < 1)
763                 thread_pool.min_spare_threads = 1;
764         if (thread_pool.max_spare_threads < 1)
765                 thread_pool.max_spare_threads = 1;
766         if (thread_pool.max_spare_threads < thread_pool.min_spare_threads)
767                 thread_pool.max_spare_threads = thread_pool.min_spare_threads;
768
769         /*
770          *      The pool has already been initialized.  Don't spawn
771          *      new threads, and don't forget about forked children,
772          */
773         if (pool_initialized) {
774                 return 0;
775         }
776
777         /*
778          *      Initialize the queue of requests.
779          */
780         memset(&thread_pool.semaphore, 0, sizeof(thread_pool.semaphore));
781         rcode = sem_init(&thread_pool.semaphore, 0, SEMAPHORE_LOCKED);
782         if (rcode != 0) {
783                 radlog(L_ERR, "FATAL: Failed to initialize semaphore: %s",
784                        strerror(errno));
785                 return -1;
786         }
787
788         rcode = pthread_mutex_init(&thread_pool.queue_mutex,NULL);
789         if (rcode != 0) {
790                 radlog(L_ERR, "FATAL: Failed to initialize queue mutex: %s",
791                        strerror(errno));
792                 return -1;
793         }
794
795         /*
796          *      Allocate multiple fifos.
797          */
798         for (i = 0; i < RAD_LISTEN_MAX; i++) {
799                 thread_pool.fifo[i] = lrad_fifo_create(65536, NULL);
800                 if (!thread_pool.fifo[i]) {
801                         radlog(L_ERR, "FATAL: Failed to set up request fifo");
802                         return -1;
803                 }
804         }
805
806 #ifdef HAVE_OPENSSL_CRYPTO_H
807         /*
808          *      If we're linking with OpenSSL too, then we need
809          *      to set up the mutexes and enable the thread callbacks.
810          */
811         if (!setup_ssl_mutexes()) {
812                 radlog(L_ERR, "FATAL: Failed to set up SSL mutexes");
813                 return -1;
814         }
815 #endif
816
817
818         /*
819          *      Create a number of waiting threads.
820          *
821          *      If we fail while creating them, do something intelligent.
822          */
823         for (i = 0; i < thread_pool.start_threads; i++) {
824                 if (spawn_thread(now) == NULL) {
825                         return -1;
826                 }
827         }
828
829         DEBUG2("Thread pool initialized");
830         pool_initialized = TRUE;
831         return 0;
832 }
833
834
835 /*
836  *      Assign a new request to a free thread.
837  *
838  *      If there isn't a free thread, then try to create a new one,
839  *      up to the configured limits.
840  */
841 int thread_pool_addrequest(REQUEST *request, RAD_REQUEST_FUNP fun)
842 {
843         /*
844          *      We've been told not to spawn threads, so don't.
845          */
846         if (!thread_pool.spawn_flag) {
847                 radius_handle_request(request, fun);
848
849                 /*
850                  *      Requests that care about child process exit
851                  *      codes have already either called
852                  *      rad_waitpid(), or they've given up.
853                  */
854                 wait(NULL);
855                 return 1;
856         }
857
858         /*
859          *      Add the new request to the queue.
860          */
861         if (!request_enqueue(request, fun)) return 0;
862
863         /*
864          *      If the thread pool is busy handling requests, then
865          *      try to spawn another one.  We don't acquire the mutex
866          *      before reading active_threads, so our thread count is
867          *      just an estimate.  It's fine to go ahead and spawn an
868          *      extra thread in that case.
869          *      NOTE: the log message may be in error since active_threads
870          *      is an estimate, but it's only in error about the thread
871          *      count, not about the fact that we can't create a new one.
872          */
873         if (thread_pool.active_threads == thread_pool.total_threads) {
874                 if (spawn_thread(request->timestamp) == NULL) {
875                         radlog(L_INFO,
876                                "The maximum number of threads (%d) are active, cannot spawn new thread to handle request",
877                                thread_pool.max_threads);
878                         return 1;
879                 }
880         }
881
882         return 1;
883 }
884
885 /*
886  *      Check the min_spare_threads and max_spare_threads.
887  *
888  *      If there are too many or too few threads waiting, then we
889  *      either create some more, or delete some.
890  */
891 int thread_pool_clean(time_t now)
892 {
893         int spare;
894         int i, total;
895         THREAD_HANDLE *handle, *next;
896         int active_threads;
897         static time_t last_cleaned = 0;
898
899         /*
900          *      Loop over the thread pool deleting exited threads.
901          */
902         for (handle = thread_pool.head; handle; handle = next) {
903                 next = handle->next;
904
905                 /*
906                  *      Maybe we've asked the thread to exit, and it
907                  *      has agreed.
908                  */
909                 if (handle->status == THREAD_EXITED) {
910                         delete_thread(handle);
911                 }
912         }
913
914         /*
915          *      We don't need a mutex lock here, as we're reading
916          *      active_threads, and not modifying it.  We want a close
917          *      approximation of the number of active threads, and this
918          *      is good enough.
919          */
920         active_threads = thread_pool.active_threads;
921         spare = thread_pool.total_threads - active_threads;
922         if (debug_flag) {
923                 static int old_total = -1;
924                 static int old_active = -1;
925
926                 if ((old_total != thread_pool.total_threads) ||
927                                 (old_active != active_threads)) {
928                         DEBUG2("Threads: total/active/spare threads = %d/%d/%d",
929                                         thread_pool.total_threads, active_threads, spare);
930                         old_total = thread_pool.total_threads;
931                         old_active = active_threads;
932                 }
933         }
934
935         /*
936          *      If there are too few spare threads, create some more.
937          */
938         if (spare < thread_pool.min_spare_threads) {
939                 total = thread_pool.min_spare_threads - spare;
940
941                 DEBUG2("Threads: Spawning %d spares", total);
942                 /*
943                  *      Create a number of spare threads.
944                  */
945                 for (i = 0; i < total; i++) {
946                         handle = spawn_thread(now);
947                         if (handle == NULL) {
948                                 return -1;
949                         }
950                 }
951
952                 /*
953                  *      And exit, as there can't be too many spare threads.
954                  */
955                 return 0;
956         }
957
958         /*
959          *      Only delete spare threads if we haven't already done
960          *      so this second.
961          */
962         if (now == last_cleaned) {
963                 return 0;
964         }
965         last_cleaned = now;
966
967         /*
968          *      Only delete the spare threads if sufficient time has
969          *      passed since we last created one.  This helps to minimize
970          *      the amount of create/delete cycles.
971          */
972         if ((now - thread_pool.time_last_spawned) < thread_pool.cleanup_delay) {
973                 return 0;
974         }
975
976         /*
977          *      If there are too many spare threads, delete one.
978          *
979          *      Note that we only delete ONE at a time, instead of
980          *      wiping out many.  This allows the excess servers to
981          *      be slowly reaped, just in case the load spike comes again.
982          */
983         if (spare > thread_pool.max_spare_threads) {
984
985                 spare -= thread_pool.max_spare_threads;
986
987                 DEBUG2("Threads: deleting 1 spare out of %d spares", spare);
988
989                 /*
990                  *      Walk through the thread pool, deleting the
991                  *      first idle thread we come across.
992                  */
993                 for (handle = thread_pool.head; (handle != NULL) && (spare > 0) ; handle = next) {
994                         next = handle->next;
995
996                         /*
997                          *      If the thread is not handling a
998                          *      request, but still live, then tell it
999                          *      to exit.
1000                          *
1001                          *      It will eventually wake up, and realize
1002                          *      it's been told to commit suicide.
1003                          */
1004                         if ((handle->request == NULL) &&
1005                             (handle->status == THREAD_RUNNING)) {
1006                                 handle->status = THREAD_CANCELLED;
1007                                 /*
1008                                  *      Post an extra semaphore, as a
1009                                  *      signal to wake up, and exit.
1010                                  */
1011                                 sem_post(&thread_pool.semaphore);
1012                                 spare--;
1013                                 break;
1014                         }
1015                 }
1016         }
1017
1018         /*
1019          *      If the thread has handled too many requests, then make it
1020          *      exit.
1021          */
1022         if (thread_pool.max_requests_per_thread > 0) {
1023                 for (handle = thread_pool.head; handle; handle = next) {
1024                         next = handle->next;
1025
1026                         /*
1027                          *      Not handling a request, but otherwise
1028                          *      live, we can kill it.
1029                          */
1030                         if ((handle->request == NULL) &&
1031                             (handle->status == THREAD_RUNNING) &&
1032                             (handle->request_count > thread_pool.max_requests_per_thread)) {
1033                                 handle->status = THREAD_CANCELLED;
1034                                 sem_post(&thread_pool.semaphore);
1035                         }
1036                 }
1037         }
1038
1039         /*
1040          *      Otherwise everything's kosher.  There are not too few,
1041          *      or too many spare threads.  Exit happily.
1042          */
1043         return 0;
1044 }
1045
1046
1047 /*
1048  *      Thread wrapper for fork().
1049  */
1050 pid_t rad_fork(void)
1051 {
1052         pid_t child_pid;
1053
1054         if (!pool_initialized) return fork();
1055
1056         reap_children();        /* be nice to non-wait thingies */
1057
1058         if (lrad_hash_table_num_elements(thread_pool.waiters) >= 1024) {
1059                 return -1;
1060         }
1061
1062         /*
1063          *      Fork & save the PID for later reaping.
1064          */
1065         child_pid = fork();
1066         if (child_pid > 0) {
1067                 int rcode;
1068                 thread_fork_t *tf;
1069
1070                 tf = rad_malloc(sizeof(*tf));
1071                 memset(tf, 0, sizeof(*tf));
1072
1073                 tf->pid = child_pid;
1074
1075                 pthread_mutex_lock(&thread_pool.wait_mutex);
1076                 rcode = lrad_hash_table_insert(thread_pool.waiters, tf);
1077                 pthread_mutex_unlock(&thread_pool.wait_mutex);
1078
1079                 if (!rcode) {
1080                         radlog(L_ERR, "Failed to store PID, creating what will be a zombie process %d",
1081                                (int) child_pid);
1082                 }
1083         }
1084
1085         /*
1086          *      Return whatever we were told.
1087          */
1088         return child_pid;
1089 }
1090
1091
1092 /*
1093  *      Wait 10 seconds at most for a child to exit, then give up.
1094  */
1095 pid_t rad_waitpid(pid_t pid, int *status)
1096 {
1097         int i;
1098         thread_fork_t mytf, *tf;
1099
1100         if (!pool_initialized) return waitpid(pid, status, 0);
1101
1102         if (pid <= 0) return -1;
1103
1104         mytf.pid = pid;
1105
1106         pthread_mutex_lock(&thread_pool.wait_mutex);
1107         tf = lrad_hash_table_finddata(thread_pool.waiters, &mytf);
1108         pthread_mutex_unlock(&thread_pool.wait_mutex);
1109
1110         if (!tf) return -1;
1111
1112         for (i = 0; i < 100; i++) {
1113                 reap_children();
1114
1115                 if (tf->exited) {
1116                         *status = tf->status;
1117
1118                         pthread_mutex_lock(&thread_pool.wait_mutex);
1119                         lrad_hash_table_delete(thread_pool.waiters, &mytf);
1120                         pthread_mutex_unlock(&thread_pool.wait_mutex);
1121                         return pid;
1122                 }
1123                 usleep(100000); /* sleep for 1/10 of a second */
1124         }
1125
1126         /*
1127          *      10 seconds have passed, give up on the child.
1128          */
1129         pthread_mutex_lock(&thread_pool.wait_mutex);
1130         lrad_hash_table_delete(thread_pool.waiters, &mytf);
1131         pthread_mutex_unlock(&thread_pool.wait_mutex);
1132
1133         return 0;
1134 }
1135
1136 #else /* HAVE_PTHREAD_H */
1137 /*
1138  *      "thread" code when we don't have threads.
1139  */
1140 int thread_pool_init(int spawn_flag)
1141 {
1142         return 0;
1143 }
1144
1145 /*
1146  *      call "radrespond".
1147  */
1148 int thread_pool_addrequest(REQUEST *request, RAD_REQUEST_FUNP fun)
1149 {
1150         radius_handle_request(request, fun);
1151         return 1;
1152 }
1153
1154 #endif /* HAVE_PTHREAD_H */