"update" for gss_userok API change
[openssh.git] / openbsd-compat / sha2.c
1 /*      $OpenBSD: sha2.c,v 1.11 2005/08/08 08:05:35 espie Exp $ */
2
3 /*
4  * FILE:        sha2.c
5  * AUTHOR:      Aaron D. Gifford <me@aarongifford.com>
6  * 
7  * Copyright (c) 2000-2001, Aaron D. Gifford
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the copyright holder nor the names of contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  * 
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35  */
36
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
38
39 #include "includes.h"
40
41 #include <openssl/opensslv.h>
42
43 #if !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \
44     (OPENSSL_VERSION_NUMBER >= 0x00907000L)
45 #include <sys/types.h>
46 #include <string.h>
47 #include "sha2.h"
48
49 /*
50  * UNROLLED TRANSFORM LOOP NOTE:
51  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
52  * loop version for the hash transform rounds (defined using macros
53  * later in this file).  Either define on the command line, for example:
54  *
55  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
56  *
57  * or define below:
58  *
59  *   #define SHA2_UNROLL_TRANSFORM
60  *
61  */
62
63 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
64 /*
65  * BYTE_ORDER NOTE:
66  *
67  * Please make sure that your system defines BYTE_ORDER.  If your
68  * architecture is little-endian, make sure it also defines
69  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
70  * equivilent.
71  *
72  * If your system does not define the above, then you can do so by
73  * hand like this:
74  *
75  *   #define LITTLE_ENDIAN 1234
76  *   #define BIG_ENDIAN    4321
77  *
78  * And for little-endian machines, add:
79  *
80  *   #define BYTE_ORDER LITTLE_ENDIAN 
81  *
82  * Or for big-endian machines:
83  *
84  *   #define BYTE_ORDER BIG_ENDIAN
85  *
86  * The FreeBSD machine this was written on defines BYTE_ORDER
87  * appropriately by including <sys/types.h> (which in turn includes
88  * <machine/endian.h> where the appropriate definitions are actually
89  * made).
90  */
91 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
92 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
93 #endif
94
95
96 /*** SHA-256/384/512 Various Length Definitions ***********************/
97 /* NOTE: Most of these are in sha2.h */
98 #define SHA256_SHORT_BLOCK_LENGTH       (SHA256_BLOCK_LENGTH - 8)
99 #define SHA384_SHORT_BLOCK_LENGTH       (SHA384_BLOCK_LENGTH - 16)
100 #define SHA512_SHORT_BLOCK_LENGTH       (SHA512_BLOCK_LENGTH - 16)
101
102 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
103 #define BE_8_TO_32(dst, cp) do {                                        \
104         (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |        \
105             ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);    \
106 } while(0)
107
108 #define BE_8_TO_64(dst, cp) do {                                        \
109         (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |        \
110             ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |   \
111             ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |   \
112             ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);    \
113 } while (0)
114
115 #define BE_64_TO_8(cp, src) do {                                        \
116         (cp)[0] = (src) >> 56;                                          \
117         (cp)[1] = (src) >> 48;                                          \
118         (cp)[2] = (src) >> 40;                                          \
119         (cp)[3] = (src) >> 32;                                          \
120         (cp)[4] = (src) >> 24;                                          \
121         (cp)[5] = (src) >> 16;                                          \
122         (cp)[6] = (src) >> 8;                                           \
123         (cp)[7] = (src);                                                \
124 } while (0)
125
126 #define BE_32_TO_8(cp, src) do {                                        \
127         (cp)[0] = (src) >> 24;                                          \
128         (cp)[1] = (src) >> 16;                                          \
129         (cp)[2] = (src) >> 8;                                           \
130         (cp)[3] = (src);                                                \
131 } while (0)
132
133 /*
134  * Macro for incrementally adding the unsigned 64-bit integer n to the
135  * unsigned 128-bit integer (represented using a two-element array of
136  * 64-bit words):
137  */
138 #define ADDINC128(w,n) do {                                             \
139         (w)[0] += (u_int64_t)(n);                                       \
140         if ((w)[0] < (n)) {                                             \
141                 (w)[1]++;                                               \
142         }                                                               \
143 } while (0)
144
145 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
146 /*
147  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
148  *
149  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
150  *   S is a ROTATION) because the SHA-256/384/512 description document
151  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
152  *   same "backwards" definition.
153  */
154 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
155 #define R(b,x)          ((x) >> (b))
156 /* 32-bit Rotate-right (used in SHA-256): */
157 #define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))
158 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
159 #define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))
160
161 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
162 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
163 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
164
165 /* Four of six logical functions used in SHA-256: */
166 #define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
167 #define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
168 #define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
169 #define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
170
171 /* Four of six logical functions used in SHA-384 and SHA-512: */
172 #define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
173 #define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
174 #define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
175 #define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
176
177
178 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
179 /* Hash constant words K for SHA-256: */
180 const static u_int32_t K256[64] = {
181         0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
182         0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
183         0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
184         0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
185         0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
186         0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
187         0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
188         0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
189         0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
190         0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
191         0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
192         0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
193         0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
194         0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
195         0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
196         0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
197 };
198
199 /* Initial hash value H for SHA-256: */
200 const static u_int32_t sha256_initial_hash_value[8] = {
201         0x6a09e667UL,
202         0xbb67ae85UL,
203         0x3c6ef372UL,
204         0xa54ff53aUL,
205         0x510e527fUL,
206         0x9b05688cUL,
207         0x1f83d9abUL,
208         0x5be0cd19UL
209 };
210
211 /* Hash constant words K for SHA-384 and SHA-512: */
212 const static u_int64_t K512[80] = {
213         0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
214         0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
215         0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
216         0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
217         0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
218         0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
219         0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
220         0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
221         0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
222         0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
223         0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
224         0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
225         0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
226         0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
227         0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
228         0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
229         0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
230         0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
231         0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
232         0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
233         0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
234         0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
235         0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
236         0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
237         0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
238         0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
239         0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
240         0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
241         0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
242         0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
243         0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
244         0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
245         0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
246         0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
247         0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
248         0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
249         0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
250         0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
251         0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
252         0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
253 };
254
255 /* Initial hash value H for SHA-384 */
256 const static u_int64_t sha384_initial_hash_value[8] = {
257         0xcbbb9d5dc1059ed8ULL,
258         0x629a292a367cd507ULL,
259         0x9159015a3070dd17ULL,
260         0x152fecd8f70e5939ULL,
261         0x67332667ffc00b31ULL,
262         0x8eb44a8768581511ULL,
263         0xdb0c2e0d64f98fa7ULL,
264         0x47b5481dbefa4fa4ULL
265 };
266
267 /* Initial hash value H for SHA-512 */
268 const static u_int64_t sha512_initial_hash_value[8] = {
269         0x6a09e667f3bcc908ULL,
270         0xbb67ae8584caa73bULL,
271         0x3c6ef372fe94f82bULL,
272         0xa54ff53a5f1d36f1ULL,
273         0x510e527fade682d1ULL,
274         0x9b05688c2b3e6c1fULL,
275         0x1f83d9abfb41bd6bULL,
276         0x5be0cd19137e2179ULL
277 };
278
279
280 /*** SHA-256: *********************************************************/
281 void
282 SHA256_Init(SHA256_CTX *context)
283 {
284         if (context == NULL)
285                 return;
286         memcpy(context->state, sha256_initial_hash_value,
287             sizeof(sha256_initial_hash_value));
288         memset(context->buffer, 0, sizeof(context->buffer));
289         context->bitcount = 0;
290 }
291
292 #ifdef SHA2_UNROLL_TRANSFORM
293
294 /* Unrolled SHA-256 round macros: */
295
296 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {                              \
297         BE_8_TO_32(W256[j], data);                                          \
298         data += 4;                                                          \
299         T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
300         (d) += T1;                                                          \
301         (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));                    \
302         j++;                                                                \
303 } while(0)
304
305 #define ROUND256(a,b,c,d,e,f,g,h) do {                                      \
306         s0 = W256[(j+1)&0x0f];                                              \
307         s0 = sigma0_256(s0);                                                \
308         s1 = W256[(j+14)&0x0f];                                             \
309         s1 = sigma1_256(s1);                                                \
310         T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +          \
311              (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);                  \
312         (d) += T1;                                                          \
313         (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));                    \
314         j++;                                                                \
315 } while(0)
316
317 void
318 SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
319 {
320         u_int32_t       a, b, c, d, e, f, g, h, s0, s1;
321         u_int32_t       T1, W256[16];
322         int             j;
323
324         /* Initialize registers with the prev. intermediate value */
325         a = state[0];
326         b = state[1];
327         c = state[2];
328         d = state[3];
329         e = state[4];
330         f = state[5];
331         g = state[6];
332         h = state[7];
333
334         j = 0;
335         do {
336                 /* Rounds 0 to 15 (unrolled): */
337                 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
338                 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
339                 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
340                 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
341                 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
342                 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
343                 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
344                 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
345         } while (j < 16);
346
347         /* Now for the remaining rounds up to 63: */
348         do {
349                 ROUND256(a,b,c,d,e,f,g,h);
350                 ROUND256(h,a,b,c,d,e,f,g);
351                 ROUND256(g,h,a,b,c,d,e,f);
352                 ROUND256(f,g,h,a,b,c,d,e);
353                 ROUND256(e,f,g,h,a,b,c,d);
354                 ROUND256(d,e,f,g,h,a,b,c);
355                 ROUND256(c,d,e,f,g,h,a,b);
356                 ROUND256(b,c,d,e,f,g,h,a);
357         } while (j < 64);
358
359         /* Compute the current intermediate hash value */
360         state[0] += a;
361         state[1] += b;
362         state[2] += c;
363         state[3] += d;
364         state[4] += e;
365         state[5] += f;
366         state[6] += g;
367         state[7] += h;
368
369         /* Clean up */
370         a = b = c = d = e = f = g = h = T1 = 0;
371 }
372
373 #else /* SHA2_UNROLL_TRANSFORM */
374
375 void
376 SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
377 {
378         u_int32_t       a, b, c, d, e, f, g, h, s0, s1;
379         u_int32_t       T1, T2, W256[16];
380         int             j;
381
382         /* Initialize registers with the prev. intermediate value */
383         a = state[0];
384         b = state[1];
385         c = state[2];
386         d = state[3];
387         e = state[4];
388         f = state[5];
389         g = state[6];
390         h = state[7];
391
392         j = 0;
393         do {
394                 BE_8_TO_32(W256[j], data);
395                 data += 4;
396                 /* Apply the SHA-256 compression function to update a..h */
397                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
398                 T2 = Sigma0_256(a) + Maj(a, b, c);
399                 h = g;
400                 g = f;
401                 f = e;
402                 e = d + T1;
403                 d = c;
404                 c = b;
405                 b = a;
406                 a = T1 + T2;
407
408                 j++;
409         } while (j < 16);
410
411         do {
412                 /* Part of the message block expansion: */
413                 s0 = W256[(j+1)&0x0f];
414                 s0 = sigma0_256(s0);
415                 s1 = W256[(j+14)&0x0f]; 
416                 s1 = sigma1_256(s1);
417
418                 /* Apply the SHA-256 compression function to update a..h */
419                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
420                      (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
421                 T2 = Sigma0_256(a) + Maj(a, b, c);
422                 h = g;
423                 g = f;
424                 f = e;
425                 e = d + T1;
426                 d = c;
427                 c = b;
428                 b = a;
429                 a = T1 + T2;
430
431                 j++;
432         } while (j < 64);
433
434         /* Compute the current intermediate hash value */
435         state[0] += a;
436         state[1] += b;
437         state[2] += c;
438         state[3] += d;
439         state[4] += e;
440         state[5] += f;
441         state[6] += g;
442         state[7] += h;
443
444         /* Clean up */
445         a = b = c = d = e = f = g = h = T1 = T2 = 0;
446 }
447
448 #endif /* SHA2_UNROLL_TRANSFORM */
449
450 void
451 SHA256_Update(SHA256_CTX *context, const u_int8_t *data, size_t len)
452 {
453         size_t  freespace, usedspace;
454
455         /* Calling with no data is valid (we do nothing) */
456         if (len == 0)
457                 return;
458
459         usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
460         if (usedspace > 0) {
461                 /* Calculate how much free space is available in the buffer */
462                 freespace = SHA256_BLOCK_LENGTH - usedspace;
463
464                 if (len >= freespace) {
465                         /* Fill the buffer completely and process it */
466                         memcpy(&context->buffer[usedspace], data, freespace);
467                         context->bitcount += freespace << 3;
468                         len -= freespace;
469                         data += freespace;
470                         SHA256_Transform(context->state, context->buffer);
471                 } else {
472                         /* The buffer is not yet full */
473                         memcpy(&context->buffer[usedspace], data, len);
474                         context->bitcount += len << 3;
475                         /* Clean up: */
476                         usedspace = freespace = 0;
477                         return;
478                 }
479         }
480         while (len >= SHA256_BLOCK_LENGTH) {
481                 /* Process as many complete blocks as we can */
482                 SHA256_Transform(context->state, data);
483                 context->bitcount += SHA256_BLOCK_LENGTH << 3;
484                 len -= SHA256_BLOCK_LENGTH;
485                 data += SHA256_BLOCK_LENGTH;
486         }
487         if (len > 0) {
488                 /* There's left-overs, so save 'em */
489                 memcpy(context->buffer, data, len);
490                 context->bitcount += len << 3;
491         }
492         /* Clean up: */
493         usedspace = freespace = 0;
494 }
495
496 void
497 SHA256_Pad(SHA256_CTX *context)
498 {
499         unsigned int    usedspace;
500
501         usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
502         if (usedspace > 0) {
503                 /* Begin padding with a 1 bit: */
504                 context->buffer[usedspace++] = 0x80;
505
506                 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
507                         /* Set-up for the last transform: */
508                         memset(&context->buffer[usedspace], 0,
509                             SHA256_SHORT_BLOCK_LENGTH - usedspace);
510                 } else {
511                         if (usedspace < SHA256_BLOCK_LENGTH) {
512                                 memset(&context->buffer[usedspace], 0,
513                                     SHA256_BLOCK_LENGTH - usedspace);
514                         }
515                         /* Do second-to-last transform: */
516                         SHA256_Transform(context->state, context->buffer);
517
518                         /* Prepare for last transform: */
519                         memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
520                 }
521         } else {
522                 /* Set-up for the last transform: */
523                 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
524
525                 /* Begin padding with a 1 bit: */
526                 *context->buffer = 0x80;
527         }
528         /* Store the length of input data (in bits) in big endian format: */
529         BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
530             context->bitcount);
531
532         /* Final transform: */
533         SHA256_Transform(context->state, context->buffer);
534
535         /* Clean up: */
536         usedspace = 0;
537 }
538
539 void
540 SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context)
541 {
542         SHA256_Pad(context);
543
544         /* If no digest buffer is passed, we don't bother doing this: */
545         if (digest != NULL) {
546 #if BYTE_ORDER == LITTLE_ENDIAN
547                 int     i;
548
549                 /* Convert TO host byte order */
550                 for (i = 0; i < 8; i++)
551                         BE_32_TO_8(digest + i * 4, context->state[i]);
552 #else
553                 memcpy(digest, context->state, SHA256_DIGEST_LENGTH);
554 #endif
555                 memset(context, 0, sizeof(*context));
556         }
557 }
558
559
560 /*** SHA-512: *********************************************************/
561 void
562 SHA512_Init(SHA512_CTX *context)
563 {
564         if (context == NULL)
565                 return;
566         memcpy(context->state, sha512_initial_hash_value,
567             sizeof(sha512_initial_hash_value));
568         memset(context->buffer, 0, sizeof(context->buffer));
569         context->bitcount[0] = context->bitcount[1] =  0;
570 }
571
572 #ifdef SHA2_UNROLL_TRANSFORM
573
574 /* Unrolled SHA-512 round macros: */
575
576 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {                              \
577         BE_8_TO_64(W512[j], data);                                          \
578         data += 8;                                                          \
579         T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
580         (d) += T1;                                                          \
581         (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));                    \
582         j++;                                                                \
583 } while(0)
584
585
586 #define ROUND512(a,b,c,d,e,f,g,h) do {                                      \
587         s0 = W512[(j+1)&0x0f];                                              \
588         s0 = sigma0_512(s0);                                                \
589         s1 = W512[(j+14)&0x0f];                                             \
590         s1 = sigma1_512(s1);                                                \
591         T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +          \
592              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);                  \
593         (d) += T1;                                                          \
594         (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));                    \
595         j++;                                                                \
596 } while(0)
597
598 void
599 SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
600 {
601         u_int64_t       a, b, c, d, e, f, g, h, s0, s1;
602         u_int64_t       T1, W512[16];
603         int             j;
604
605         /* Initialize registers with the prev. intermediate value */
606         a = state[0];
607         b = state[1];
608         c = state[2];
609         d = state[3];
610         e = state[4];
611         f = state[5];
612         g = state[6];
613         h = state[7];
614
615         j = 0;
616         do {
617                 /* Rounds 0 to 15 (unrolled): */
618                 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
619                 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
620                 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
621                 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
622                 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
623                 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
624                 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
625                 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
626         } while (j < 16);
627
628         /* Now for the remaining rounds up to 79: */
629         do {
630                 ROUND512(a,b,c,d,e,f,g,h);
631                 ROUND512(h,a,b,c,d,e,f,g);
632                 ROUND512(g,h,a,b,c,d,e,f);
633                 ROUND512(f,g,h,a,b,c,d,e);
634                 ROUND512(e,f,g,h,a,b,c,d);
635                 ROUND512(d,e,f,g,h,a,b,c);
636                 ROUND512(c,d,e,f,g,h,a,b);
637                 ROUND512(b,c,d,e,f,g,h,a);
638         } while (j < 80);
639
640         /* Compute the current intermediate hash value */
641         state[0] += a;
642         state[1] += b;
643         state[2] += c;
644         state[3] += d;
645         state[4] += e;
646         state[5] += f;
647         state[6] += g;
648         state[7] += h;
649
650         /* Clean up */
651         a = b = c = d = e = f = g = h = T1 = 0;
652 }
653
654 #else /* SHA2_UNROLL_TRANSFORM */
655
656 void
657 SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
658 {
659         u_int64_t       a, b, c, d, e, f, g, h, s0, s1;
660         u_int64_t       T1, T2, W512[16];
661         int             j;
662
663         /* Initialize registers with the prev. intermediate value */
664         a = state[0];
665         b = state[1];
666         c = state[2];
667         d = state[3];
668         e = state[4];
669         f = state[5];
670         g = state[6];
671         h = state[7];
672
673         j = 0;
674         do {
675                 BE_8_TO_64(W512[j], data);
676                 data += 8;
677                 /* Apply the SHA-512 compression function to update a..h */
678                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
679                 T2 = Sigma0_512(a) + Maj(a, b, c);
680                 h = g;
681                 g = f;
682                 f = e;
683                 e = d + T1;
684                 d = c;
685                 c = b;
686                 b = a;
687                 a = T1 + T2;
688
689                 j++;
690         } while (j < 16);
691
692         do {
693                 /* Part of the message block expansion: */
694                 s0 = W512[(j+1)&0x0f];
695                 s0 = sigma0_512(s0);
696                 s1 = W512[(j+14)&0x0f];
697                 s1 =  sigma1_512(s1);
698
699                 /* Apply the SHA-512 compression function to update a..h */
700                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
701                      (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
702                 T2 = Sigma0_512(a) + Maj(a, b, c);
703                 h = g;
704                 g = f;
705                 f = e;
706                 e = d + T1;
707                 d = c;
708                 c = b;
709                 b = a;
710                 a = T1 + T2;
711
712                 j++;
713         } while (j < 80);
714
715         /* Compute the current intermediate hash value */
716         state[0] += a;
717         state[1] += b;
718         state[2] += c;
719         state[3] += d;
720         state[4] += e;
721         state[5] += f;
722         state[6] += g;
723         state[7] += h;
724
725         /* Clean up */
726         a = b = c = d = e = f = g = h = T1 = T2 = 0;
727 }
728
729 #endif /* SHA2_UNROLL_TRANSFORM */
730
731 void
732 SHA512_Update(SHA512_CTX *context, const u_int8_t *data, size_t len)
733 {
734         size_t  freespace, usedspace;
735
736         /* Calling with no data is valid (we do nothing) */
737         if (len == 0)
738                 return;
739
740         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
741         if (usedspace > 0) {
742                 /* Calculate how much free space is available in the buffer */
743                 freespace = SHA512_BLOCK_LENGTH - usedspace;
744
745                 if (len >= freespace) {
746                         /* Fill the buffer completely and process it */
747                         memcpy(&context->buffer[usedspace], data, freespace);
748                         ADDINC128(context->bitcount, freespace << 3);
749                         len -= freespace;
750                         data += freespace;
751                         SHA512_Transform(context->state, context->buffer);
752                 } else {
753                         /* The buffer is not yet full */
754                         memcpy(&context->buffer[usedspace], data, len);
755                         ADDINC128(context->bitcount, len << 3);
756                         /* Clean up: */
757                         usedspace = freespace = 0;
758                         return;
759                 }
760         }
761         while (len >= SHA512_BLOCK_LENGTH) {
762                 /* Process as many complete blocks as we can */
763                 SHA512_Transform(context->state, data);
764                 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
765                 len -= SHA512_BLOCK_LENGTH;
766                 data += SHA512_BLOCK_LENGTH;
767         }
768         if (len > 0) {
769                 /* There's left-overs, so save 'em */
770                 memcpy(context->buffer, data, len);
771                 ADDINC128(context->bitcount, len << 3);
772         }
773         /* Clean up: */
774         usedspace = freespace = 0;
775 }
776
777 void
778 SHA512_Pad(SHA512_CTX *context)
779 {
780         unsigned int    usedspace;
781
782         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
783         if (usedspace > 0) {
784                 /* Begin padding with a 1 bit: */
785                 context->buffer[usedspace++] = 0x80;
786
787                 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
788                         /* Set-up for the last transform: */
789                         memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
790                 } else {
791                         if (usedspace < SHA512_BLOCK_LENGTH) {
792                                 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
793                         }
794                         /* Do second-to-last transform: */
795                         SHA512_Transform(context->state, context->buffer);
796
797                         /* And set-up for the last transform: */
798                         memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
799                 }
800         } else {
801                 /* Prepare for final transform: */
802                 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
803
804                 /* Begin padding with a 1 bit: */
805                 *context->buffer = 0x80;
806         }
807         /* Store the length of input data (in bits) in big endian format: */
808         BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
809             context->bitcount[1]);
810         BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
811             context->bitcount[0]);
812
813         /* Final transform: */
814         SHA512_Transform(context->state, context->buffer);
815
816         /* Clean up: */
817         usedspace = 0;
818 }
819
820 void
821 SHA512_Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
822 {
823         SHA512_Pad(context);
824
825         /* If no digest buffer is passed, we don't bother doing this: */
826         if (digest != NULL) {
827 #if BYTE_ORDER == LITTLE_ENDIAN
828                 int     i;
829
830                 /* Convert TO host byte order */
831                 for (i = 0; i < 8; i++)
832                         BE_64_TO_8(digest + i * 8, context->state[i]);
833 #else
834                 memcpy(digest, context->state, SHA512_DIGEST_LENGTH);
835 #endif
836                 memset(context, 0, sizeof(*context));
837         }
838 }
839
840
841 #if 0
842 /*** SHA-384: *********************************************************/
843 void
844 SHA384_Init(SHA384_CTX *context)
845 {
846         if (context == NULL)
847                 return;
848         memcpy(context->state, sha384_initial_hash_value,
849             sizeof(sha384_initial_hash_value));
850         memset(context->buffer, 0, sizeof(context->buffer));
851         context->bitcount[0] = context->bitcount[1] = 0;
852 }
853
854 __weak_alias(SHA384_Transform, SHA512_Transform);
855 __weak_alias(SHA384_Update, SHA512_Update);
856 __weak_alias(SHA384_Pad, SHA512_Pad);
857
858 void
859 SHA384_Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context)
860 {
861         SHA384_Pad(context);
862
863         /* If no digest buffer is passed, we don't bother doing this: */
864         if (digest != NULL) {
865 #if BYTE_ORDER == LITTLE_ENDIAN
866                 int     i;
867
868                 /* Convert TO host byte order */
869                 for (i = 0; i < 6; i++)
870                         BE_64_TO_8(digest + i * 8, context->state[i]);
871 #else
872                 memcpy(digest, context->state, SHA384_DIGEST_LENGTH);
873 #endif
874         }
875
876         /* Zero out state data */
877         memset(context, 0, sizeof(*context));
878 }
879 #endif
880
881 #endif /* !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \
882     (OPENSSL_VERSION_NUMBER >= 0x00907000L) */